Pre-clags Warm-up!!! | 4, 5 o i o i

£ hek elgenvedass [ { } , [,U ket

True or False?

The matrix 1o, 3:\ has 3 eigenvectors, no |
two of which are scalar multiples of each other. "'L(ja“fww 4 -1

a. True

b. False
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6.2 Diagonalization of matrices

New vocabulary:
e diagonalize, diagonalizable, similar

We learn:

e the connection between eigenvalues,
eigenvectors and diagonalization

e how to diagonalize a matrix (when it is
diagonalizable).

e Some theorems: a criterion for
diagonalizability; independence of
eigenvectors when eigenvalues are distinct;
distinct eigenvalues implies diagonalizable.

What we don't really learn:
e why we would want to diagonalize matrices
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Definition. Square matrices A and B are similar
if there is an invertible n x n matrix P so that
PA{-1}AP = B

A square matrix A is diagonalizable if it is
similar to a diagonal matrix.
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Example: A = [ ]
Try the matrix P = [ ] so PA{-1} = JE 1]
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Theorem. Let A, P D be n x n matrices with
P invertible and D diagonal.
Then PA{-T}JAP = D if and only if the columns

of P are eigenvectors for A with eigenvalues
the diagonal entries in D.
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Theorem 1. An nxn matrix A is
diagonalizable if and only if A has n linearly
independent eigenvectors.
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Example. The matrix A = [O ,] is not
diagonalizable.
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Like 6.2 questions 1-28

Find whether or not the following matrices are
diagonalizable. If so, find P so that

PA{-1}AP = D is diagonal.
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Like 6.2 questions 1-28
Find whether or not the following matrices are

diagonalizable. If so, find P so that
PA{-1}AP = D is diagonal.
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Question: How many distinct eigenvalues does
matrix 4. have? If you get to it: is it
diagonalizable?

a. 0

b. 1



Theorem 2. If A has eigenvectors v_1, ... v_k NC - la dhorter relodion jﬁ C> |
associated to distinct eigenvalues, then it

v_1, ..., v_k are independent. Thie 1S 4 comtradection | The
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Page 354 Question 32
Show that if n x n matrices A and B are similar,

then they have the same characteristic equation,
and therefore have the same eigenvalues.

Page 354 Question 29

Prove: if the matrices A and B are similar
and the matrices B and C are similar, then
the matrices A and C are similar.



